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PREFACE

Many practical problems in industrial and social planning require op-
timal decisions to be made periodically through time. Linear programs, called
dynamic linear programs, can often be formulated to model the requirements
of these decision processes. These programs are generally quite large and
difficult to solve. The search for efficient methods in finding their optimal
solutions has been a major topic in operations research for the past 25 years.

Often the problem modeled by a dynamic linear program involves un-
certainties which can complicate and exponentially increase the program’s
size. There may be several possible outcomes in the future, but determinis-
tic linear programs usually only consider the most likely outcome. In this
dissertation, we present methods for solving the stochastic dynamic linear
program, the dynamic linear program with uncertainties explicitly included.

Our methods take advantage of the program structure. Dynamic linear
programs are characterized by a staircase structured coefficient matrix, in
which non-zero elements appear only in blocks along the diagonal or adjacent
to the diagonal. This structure makes many efficient techniques possible. We
will show that the stochastic model’s specific structure can lead to additional
procedures, and that these procedures may improve upon complicated “brute
force” solution methods.

We begin in Chapter I by presenting sufficient conditions for a deter-
ministic problem’s optimal solution to solve a stochastic problem. The second
chapter discusses the difficulties involved in using deterministic solutions in
general. We also explore the possibilities for combining separate deterministic
solutions and give examples of problems that require the stochastic dynamic
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linear program to be solved.

Chapters III, IV, and V present methods for solving the full stochastic
program. The first method follows from the decompositions approach to
large-scale programming. The next two methods employ different large-scale

structured programming techniques, in which, the basis is partitioned but not

completely decomposed.

Chapter VI demonstrates that the methods we present are actually
dynamic programming approaches. They only differ in their strategies for
approximating the optimal state space solution at each stage.

In the final chapter, we present some computational results for our
algorithms and discuss potential areas of applications. We also state our

conclusions on the use of stochastic dynamic linear programs and suggest

areas of future research.
In this dissertation, we use standard mathematical notation. More specific

notational conventions are defined in the text. Within each chapter, we refer

to equations and propositions by their order of presentation in that chapter ‘
(eg.,equation (12)). In reference to equations in other chapters, we prefix the

equation by the chapter’s roman numeral (eg., (II.12)).
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CHAPTER 1
Deterministic Solutions for Stochastic

Dynamie Linear Programs

1. Introduction

Dynamic linear program models have been formulated for many different
practical situations. When these models involve uncertain quantities, the
solution of the resulting stochastic dynamic linear program can be very
difficult. Under some circumstances, however, an associated deterministic
problem can be stated that is easier to solve and can be used as the “solution”

to the stochastic program.

In this chapter, we will state conditions that imply that this deterministic
solution is in fact optimal for the stochastic dynamic linear program. We
call a solution “deterministic” it solves a program that does not allow for
any uncertainty in the program parameters. We also will use myopic solution
to refer to a solution of a program in period ¢t that does not make use of
information from periods after ¢£. A solution that considers uncertainty in

the future, is called stochastic.

In our development of an optimal deterministic solution, we first present
the basic multi-stage model and the various approaches taken for its solution.
Also, in Section 2, we introduce some terms and notation that appear in
the following chapters and discuss the value of having information about
the random variables. To do this, we present inequalities that measure the

superiority of the stochastic solution over a deterministic solution.

The chapter concludes in Section 3 with the description of conditions
1
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for an optimal deterministic solution. We also give an example of a prob-
lem in which a deterministic solution is optimal and illustrate how added

complications can necessitate a stochastic solution.
3. The Multi-Stage Problem

The dynamic, or multi-stage, linear program, to which we shall refer,

has the following form:

min 2 = €121 +caz3 ~+-erzr
subject to Az = by,

—B121+A4222 =-‘ 2 (DLP)
—Br_1zr—1+Arzr = {7,
z¢ > Viorallt,
where z; € R™ (n;-dimensional Euclidean space), b; € R™:, £ € R™¢, and
the vectors, ¢;, and matrices, A; and B;, are dimensioned to conform.

For a DLP problem, the right-hand sides, £;, are given. For a situation
in which £; is random, the DLP becomes one possible program out of the
possible outcomes for ;. In our analysis here, we will not let any of the
other quantities be random, so ¢¢, A¢, B¢, and b;, will be assumed known.
Moreover it is assumed ¢; and £y are independent ¢ # ¢'.

We can also view DLP as an optimal control problem by assuming more
structure for the matrices. In this case, we would have z; = (y:, us), where

y: is a state variable and u; is a control variable, and we would partition the

matrices and vectors as




0
§e = ( 2) (1)
t

et )

This formulation includes transitions from state to state according to

and

—Ays — Bty = Yr 41

and interperiod requirements of

Giy1Zt 41+ D181 = E141.

The random vector y, | represents unknown state to state transitions and fu-
ture requirements. Although some computational efficiency may be afforded
by the special structure of this model, we will restrict our discussion to the
general case of DLP.

The first approach we consider for DLP is to solve it for all possible
&: and then take the expected value of 2; as the measure of cost. This
approach requires perfect information of the outcomes of all future events
and is known in the literature as the “wait-and-see” solution (see Madansky
(38]). It would be the optimal solution, if one could somehow wait and see
until the end of the planning horizon and could beforehand make decisions
based on what will occur. Obviously such a perfect information solution is not
implementable. When averaged over every possible §;, it provides a measure

of the best expected value one could achieve given advanced information

about the random variables. We write the expected value of this solution as
3




2, where,

Zy = Egq,. ealz1(ér, .., )], (3)

the expectation, “E”, is with respect to the random variables, &3, ..., {7, and
2y is defined as in DLP with parameters £3,...,€r.

An alternative and more realistic approach to the stochastic problem is
to consider that during each period ¢ the value ¢; is known and a decision
on z; must be made without knowledge of the realizations of the future
periods’ uncertainties. This is known as the “here-and-now” solution because

it reflects the need for current decisions. The program can be written as

min 2= €12y + Egleaza + Egleszs ++ Egplerzr]]
subject to Ayzy = b,
—Bizy +Azza = g,
—Br—i1zr—1  +Arzr = {r,
Tt 20,
€t € B,
fort=2,...,T.

(4)
Problem (4) states that for t =T, £r_, is given , ér = ? r is observed
and 27 > 0 chosen so that ¢rzr is minimum. Assuming that Z will be so
chosen, 2r_; is chosen so that, cyr_3127—1 + Eg¢, [erzr] is minimum given
273 and £7_; observed, etc.
In general, the decision process for an actual implementation proceeds
as follows:

A. A decision, 2, is made and implemented.

B. A realization, Z‘,, of £ is observed, and a decision, %3, is made and

4
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implemented.
C. The process is repeated to find each Z; in period ¢, given the past decision
27— and the outcome of the random vector £7—;.

We are going to investigate the effects of using different methods for
determining the decisions, Z;. Not all of these methods exactly solve (4), so
we must evaluate the expected value of the objective function for solutions
by each method. For a given method, u, of choosing %,, £, ..., 27, we first
define a function of the random variables, &, which gives the cost of using

those decisions. We write this as

2(2,€ | u) = c1 - 21(p)
+e2- £2(ih 22 | ”) +---+er- iT(zl: SRR iT—l: 22) SRRy zT—l I “))
(5)
p) is the decision chosen by u given the

where 2¢(%1,...,%¢—1,8,,...,&:
previous decisions, 2,,...,%:—1, and observations, &,,..., §.
We can then take expectations over the random vectors to determine the

expected cost of the solution found by method u. We write this as

Z(u) = E¢l2(2,¢ | p)]. (6)

An exact (but expensive) method for finding an optimal solution to (4)
is to proceed by a dynamic programming scheme with backward iteration.
We will call this “Method 2”. We begin by setting the terminal valuation

function:

zX(z7—1,ér)= min erzr

subject to Arzr=§r + Br—1z1—,, (")
zr2> 0
5
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and let zI(zr—1) = E¢p[23(zr—1, é7)]. We further define the recursion on

the valuation function as:

z5(ze—1, &)= min cyz¢ + 25T (z4)
subject to Aze= §t + Be—12¢—1, (8)
th 0

and let 25(z¢—1) = Eg,[25(z:—1, &)]. We finally arrive at

21(b1) = min ¢1z1 + 2(z;)
subject to Ai1z1= by, (9)
z: Z 0.

Method y = 2 leads to a sequence of decisions, Z;(4 = 2). We can take

expectations of the outcome of these decisions as in (6). This yields

Z2 = E¢l22(2,€ | p=2)]. (10)

A ~

We observe that for some outcome & = (&, ..., &),

za(2, & | p = 2) = e121(23) + cata(23(21, &) + - + er2r(z] (Br—1, &7))

where, for each t, 2¢(2}(%:—1, £;)) is the optimal solution of (8). Hence, by

integrating, we obtain

Zq = Zé(bl)

So, for Method 2, the result in (9) is the minimum expected cost found by
the method.

The expected value, %, is the best possible solution for situations in
which decisions must be implemented over time. (For details on this result,

6




see Chapter VI on dynamic programming.) Enumerating the states, z;_,
in general, can be very difficult, especially when {; can have a continuous
distribution. For this reason, we assume that either the distribution of §; is
discrete for all ¢ or that we can approximate the continuous distribution by
a discrete sample of size k; where k; is not too large. We assume, therefore,

that for all ¢ and some &, € R™(1),

(vt if & =&
p, if & = &
P& =&)=1, (11)
ok, if & = &5
\0, otherwise.

where by our independence assumptions the probabilities p;' do not depend
on earlier outcomes.
We have then k; possible outcomes for the random right-hand sides in

period t. The outcomes form a tree of possible values (see Figure 1.).

Period
t=1 2

Scenario

Figure 1. The outcome tree.




We also define k; as the total number of possible outcomes from period
1 to period ¢, thus

ke =T1¢_,%,. (12)

The tree of outcomes includes k; nodes in each period t. We call each node a
scenario. In period ¢ then, a scenario corresponds to a realization of outcomes,
=&, . .6=§

Using this framework, a descendant of a scenario j in period ¢, is defined
as any node in periods t + 1 to T on the branch connected to node 5. We
adopt the notation 7 for descendants of 5. An ancestor of j is then a node
on the same branch as j in periods 1 to £ — 1. We denote an ancestor of j
as 3 These definitions will apply in this and all subsequent chapters.

Given the discrete distribution, we can write (4) as an explicit linear

program. (4) becomes

. k “ 3 k . -
23 = min ¢;z; + Zj;lpiczz; +-o 4 ZJ-LIp-}.cTzE}

subject to
Az = by,
—Biz, +A22'; = £§, for all 7,
—Br_1zh_, +Arzi =&, forall j,
s 2> 0for all t.
(SDLP)

This program, SDLP, is the primary focus of our presentation. It repre-
sents a formulation of the general stochastic dynamic linear program given a

discrete distribution. By defining p{ as the probability of a node in the tree of
8
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outcomes, we can also incorporate interdependence of the time periods into
the model.

SDLP will be analyzed as a structured linear program (presented in
Figure 2). Its structure resembles the staircase structure of deterministic
dynamic linear programs, but the repetition of the —B; blocks for each
descendant scenario forms spikes below the diagonal. This property makes

the strict application of staircase approaches difficult.

Another complication of the stochastic model is that the number of
blocks, non-sero partitions of the coefficient matrix, grows exponentially with
the number of periods, as we see in (12). We will present methods for solving

SDLP that reduce the effects of this complication.

The decision process of solving SDLP will be called Method 4 = 3. The
expected cost found by this method is

z= Elzs(2,¢ | p=23)], (13)

)/ ]

7, V11V,
V//V///

/! // A//,

Figure 2. Alternative structures.




An extreme simplification in SDLP would be to consider only one pos-
sible outcome for each random variable. A reasonable choice would be the
expectation, £;. The corresponding program has the same form as DLP in
which the means, &,,..., €, appear on the right-hand side. The solution of
this problem eliminates the increasing size problem of SDLP and is, therefore,
the form usually chosen in practice. In some instances, as we show below, it
can even yield the optimal solution to the stochastic program.

We call this deterministic approach of substituting the expectations for
the random variables, Method u = 4. We compute the expected cost of
Method 4 then as

Za= Eglz4(2,6 [ p=4)]. (14)

The above four approaches to the stochastic dynamic linear program are

all related to one another as the following lemma states.

Lemma 1. The expected cost of the approackes presented above are ordered

by

71 <23 <7, Z1 <7 <7, (15)
and, for (discrete) distributions without approximationsZ; < Za = Z3 < Z4.

Proof. Each method can be shown to improve upon the solution by the
previous method. For Z; < Z;, we observe that z;(z, £ | p = 1) < 23(z, € |
# = 2) since Method 1 chose the optimum solution for each § whereas y = 2
does not in general. Integration preserves the inequality, hence, Z; < Z3.
The next inequality involves either 4 = 3, where an incorrect discrete
distribution can be used to approximate the correct one, or g4 = 4,where
the distribution is replaced by one calculated at the expected value. Since

10
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Method 2 optimises (8) for all &, E¢,[z4(zi—1, &) < E¢,_, [25(ze—1, E—1)]
for all t. Hence, Z; < Z3 or 2; < Z, follows.

The lemma includes the obvious result that, for the expected value of
perfect information, EVPI, where EVPI= %Z; — %, if the correct distribution

is used or zZ; — Z3 if not,

EVPI > 0.

This difference represents the maximum amount that one would pay for
information about the future. When the EVPI is low there may be little
necessity in refining forecasts, but, when it is high, incomplete information
about the uncertainties may be costly. In the following chapter, we present
an example of this possibility.

A second quantity that we want to examine here is the difference z; —
Z4 Or Z3 — Z4, which we call the value of the stochastic solution , VSS.
VSS measures the benefit from solving a stochastic program over solving its
deterministic approximation. A low VSS indicates that the more complicated
SDLP might not be worth the extra effort. VSS can be bound without solving
SDLP, as we show in the next chapter.

We note that in Lemma 1 to guarantee that Zz3 < Z4, we had to assume
that the discrete distribution was correct. If the distribution used was only an
approximation, then it is possible to make an estimate of the distribution that
would lead to Zz3 > %,. This anomaly can occur because some scenarios could
lie under sections of the piecewise linear curve, 2}(z¢—1, £:), that lead to high
penalties. We discuss these scenario results more closely in Chapter 2. For
our purposes, we assume that the discrete distribution used suffices because
more information about the distribution is not available. The considerstion

11
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of individual scenarios is the only alternative.

Given these assumptions about the distribution, we would still like to
know when SDLP should be solved. To show when SDLP need not be solved,
in the next section, we present some conditions that imply VSS=0. In the
following chapter, we will give bounds on VSS that also aid in evaluating
whether SDLP is worth solving.

3. Optimal Deterministic Solutions

When the numerical costs of solving a stochastic problem are high, a
deterministic solution technique is attractive. Since decisions often cannot
wait for the detailed analysis of all fature possibilities, the method based
on assuming some “best guess” of the future eavironment, is most often the
one implemented. In fact, the even simpler policy of using a myopic solution
may provide a good basis for decisions. By finding conditions for VSS=0,
we are trying to avoid the effort of correctly solving a general stochastic
program. With the conditions below, we can check whether the stochastic
program need be tried at all. The following lemma, a well-known result from

sensitivity analysis, is fundamental in our development.

Lemma 3. Let B be an optimal basis for DLP with £ = (€3,&s,...,&7). If
B remains feasible for all £ € B, then B is an optimal basis for DLP for all

¢.

Proof. Partition the coefficient matrix and cost row according to basic

variables, zp, and non-basic variables, z);. DLP becomes

12




min ¢pZp+CNIN

subject to Bzp+Nzn = (b,,&),
M So (16)
N 20,

where we use the notation ¢ to indicate the transpose of v, go (b3, Y is the
column vector of right-hand sides in DLP.

For B optimal, there exist prices, x, such that

B = B, (17)
N S eN,
and
Zp = B—l(blrE)T Z 01 (18)

zny 2 0.
If zp remains feasible for all £ in (18), (17) still holds, guaranteeing dual

feasibility and complementarity. Hence, B is still an optimal basis. J

The next problem we might encounter is that of testing whether B is
indeed feasible for all values of £. An enumeration of all possible £ is not
necessary. Garstka and Rutenberg [25] showed that simple computations for
many practical problems, could be performed quickly to find the probability
that a given basis is optimal. Their process involves fixing some components
in the lattice of discrete values of ¢ and then finding the feasible range for the
remaining components. This method also proves valuable in the subproblem
solutions we investigate in Chapter 3.

To use a basis which satisfies the conditions in Lemma 2 in SDLP, still

other conditions must be met. The next lemma helps us find these conditions.

For this lemma, we will use a solution from DLP in SDLP. We do this by

letting the set of basic activities in DLP, {z2 : t = 1,..., T}, be repeated to
13
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form a basic set in SDLP. This basic set in SDLP is {zf’ y=1,.. kyt=

1,..., T}, where zP¢ = z? for all j.

Lemma 3. Let the set of activities for a feasible basis, B, in DLP be
{zB,...,22} where each zP represents activities from period t. Also, let
SDLP have at least two distinct new scenarios at each period (i.e., K+ > 2).
The activities, {zf’}, where zf’ = zP for all j, form a feasible basis in

SDLP if and only if =2 consists of m(t) activities for all t.

Proof. (See Figure 3.) Essentially we shall show that if the count on the
number of basic z; is not m(t) for all ¢ that the corresponding SDLP candidate
for basis will be singular. For the necessity of the condition, first let u(t) be
the number of elements in z7. Assume z(t) does not have m(t) elements for
all ¢t. Thus, there exists some u(t) > m(t). { If not, since E,Ll m(t) = m,
u(t) = m(t) for all ¢.)

We note that, for u(t) > m(t), t < T. This is true because, if u(7T) >
m(T), then Z,T __:11 ut) < 2{__?11 m(t), which contradicts the fact that {zf’}
corresponds to a basis. Set ! = min {¢: u(t) > m(t)}. We note that there
exists no ¢ < ' such that u(t") < m(t"). Again, this would mean the basis
was not of full rank. Now, we have 2:’=1 u(t) — E:I=1 m(t) = kv - 6;, where
6 = (') — m(t"). But, for t > ¢!, 17 _py, #(t) — Ti_ppy mit) = —Fy -
k41 B¢, since each deficiency is repeated ky . times. Hence, Etrzl u(t) =
ke(1—Fer41)-6 +ZZ‘=1 m(t), which, by our assumption, implies the columns
of the activities, {zP}, do not form a basis in SDLP. To show sufficiency, first
note that if zP has m(t) elements in each period ¢, then, for all ¢, there exists
a square non-singular partition of the basis, By, with columns and rows only

in ¢. (If not, B does not span the row space in period t.) Therefore, in SDLP,

the set of columns, {B(5)}, is linearly independent. By construction, the =2

14




correspond to m(1) - EL: k:m(t) columns, so the activities form a basis.

From this lemma, we obtain our result as stated in the following theorem.

Theorem. If the optimal basis, B, for the program DLP, with § = §, is

feasible for all £ € B, and if B has as many columns as there are rows in each
period, then the set of activities in B forms an optimal basis in SDLP, and
VSS =0.

Proof. First, to show primal feasibility, let A,B’ be the square non-singular
submatrix associated with the activities z? in scenario 5. For all t and j, we

have

281 = (AP TNE + B12T ), (19)

which is the same value as £Z in DLP for & = §. Hence, £3/ > 0 by
Lemma 1 for all 5 and ¢.
Let xP be the dual variables in DLP for the basis, B. Next, define

xP4 = pixP. In period T, we obtain

15
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x5t = pixP (20)
and
r?’A?’ < pe¥, (21)

where the c’}’ are the non-basic costs in scenario j for y = 1,...,kyr. In

general, for rf’ in SDLP, we have

Ret1
B : . .
— Y x1.BY 4 xPA = —pinB BP 4 pIrPAP =picf  (22)
i=1

and

Beta B
— Z xtile” +rf’ Ni <N, (23)
3’=1
By (22) and (23), for zf’ feasible, B is an optimal basis in SDLP. (19)
implies that the solution in SDLP given scenario j is the same as in DLP.
Hence, Z3 = Z4, and VSS = 0. We further note that this also implies the

optimal solution is myopic. §

This result gives us a method to check for deterministic optimality, but
it may be difficult to satisfy these conditions in practical examples. Even
when not satisfied, they could be useful, however, in finding an optimal
solution with confidence a, where «a is the probability of being optimal. The
Garstka and Rutenberg procedure mentioned above would be useful for these
computations. (This could also be applied to a problem of the form of a

chance-constrained program as in Charnes and Cooper [14], but we wish to

restrict our development to the recourse problem, SDLP. )

16




The next result presents an alternative set of conditions that may prove
useful when the conditions in our theorem are not satisfied. We state them

as a corollary.

Corollary. Let {B(f)} be a family of bases for DLP, where B(t) is optimal for
& € B. Assume also that, for all periods t and nodes j of scenario i, the set
of basic activities, {zf("("»} , is the same for all i(j) that include the nodes,
{3, :1=1,..,k}, the descendants of j. If each B(t) additionally has square
blocks in each period, then the set of basic activities chosen from {B(t)} is
optimal in SDLP, and VSS = 0.

Proof. Since zf(‘(j)) is the same for all 7, we can define a set of activities for
SDLP as z57 = zP({9)) for all ¢ and j. Now, for primal feasibility, we again
have (19) for all ¢ and 7, so ﬁf’ > 0.

For the dual, define

,rtB: — pj,rf(f(j)). (24)
Hence, at period 7',
nr Ay =pief, (25)
and
x D1 AR < pielY. (26)
For general ¢, we have
E’—‘l FC-’-—I
B By 4B T . B( B B
- z xf-:-leB + ﬂ.f ’Al ! = 2 pJ(—.rt-{(:g;)BfB + xt (i(j))At ’)I (27)
.—1'=1 3'31
=ple],
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and

S B N. j
> wt BY +xAM < picl. (28)
i=1

(25), (26), (27), and (29) give us dual feasibility and complementarity,
proving that the set of variables {zf’} is optimal. Again, from (19), the
values are the same as in solving any deterministic form DLP, so VSS = 0.

The corollary gives us more conditions for finding the optimal solution
to SDLP without actually solving it. An example of a model which meets
these requirements is the Hotelling~Nordhaus model of exhaustible resources
(see [34] and [46]) and its extension by Chao [12].

In Chao’s model, a dynamic production schedule is chosen to minimize
the cost of satisfying an increasing sequence of demand requirements over
time. The demands may be satisfied by any of m— 1 technologies, each using
one distinct resource, with finite availability and one “backstop” technology

with no resource limits. The program is

m oo m T
min Y Y Bew+ Y, Y Bkiza (29)
1=1t=0 t=1t=0
subject to
Yoo Uit< Ri,i=1,2,...,m,
Y ya=Dyt=1,2,...,T,
Vit+1= Yit -+ 2oeo(s — 8a—1)Zijt—s,
ya> 0,t=0,1,...,
zg2> 0, =1,2,...,m,

18
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where y;; is the amount of the demand, D;, satisfied by resource ¢ at time ¢,
z,¢ 18 the amount of resource § committed at t so it may be extracted later,
¢; is the current cost of technology ¢, k; is the capital cost of s, 8 is the
discount factor, §; is the extraction rate, and R; is the initial availability of
the resource used in technology s.

Chao showed that, for this model, a myopic solution is optimal for all
future demands and supplies. This solution implies that a family of bases,
{B(1)}, exists that satisfies the conditions of the corollary. Therefore, the

stochastic program for (29), in which, Dy and R; are random, has a deter-

ministic and myopic solution and VSS = 0. We note that this very simple
model can be modified so that VSS grows. Chao explored the case of price-
responsive demands and found that, with a “sufficiently high” discount rate,
the optimal decisions are still insensitive to “distant-future” uncertainties.
Our example in Chapter II shows how near future uncertainties can greatly
affect current decisions, also making VSS high.

This chapter has described the value of information in the consideration
of decisions made over time. We presented the program, SDLP as a method
for incorporating uncertainties into a decision process and explored the pos-
sibilities for finding a solution to SDLP without solving the full problem.

The value of the stochastic solution is, however, not always low.
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Chapter I

The Nature of the Stochastic Solution

1. Introduction

In Chapter I, we presented conditions, under which, the optimal solution
to a certain deterministic program is the solution to the stochastic dynamic
linear program. The deterministic model used the expected values of the
random right-hand sides. . Unfortunately, the great majority of stochastic
problems do not meet the certainty equivalence criterion, ie. the sufficient
conditions for deterministic optimality. When a model fails the conditions
of Chapter I, it would be desirable to solve the stochastic problem directly.
In this chapter, we explore the value of that solution and the costs that can

arise from not finding the optimal stochastic solution.

We shall concentrate on decisions based upon “risk neutrality”, meaning
we wish to optimize the expected value of our policy decisions. Alternatively,
the decision maker might want to minimize the probability of a catastrophic
loss or, otherwise, reduce the variance of his expected utility. These at-
tributes could be reflected in a carefully defined nonlinear utility function or
in penalties placed on the less attractive scenarios. In this discussion, we do
not consider such specifications. Our consideration of linear models should

be, however, sufficiently general to allow for further analysis in this area.

This chapter begins with a discussion of bounds on the expected value
of perfect information. It then proceeds in Section 3 to examine uses of the
deterministic optimization of different scenarios. In Section 4, the possibilities
for combining these solutions and the inherent difficulties in the stochastic
program are discussed. Sections 5 then presents examples of these problems.
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The chapter concludes in Section 6 with a suggestion for a general strategy

to be applied in linear optimisation under uncertainty.
2. Bounds on the Expected Value of Perfeet Information

We discussed above the expected value of perfect information (EVPI)
and value of the stochastic solution (VSS) and showed examples when these
quantities might be zero. When the conditions for deterministic optimality
are not met, we would like to have simple bounds on the EVPI that may
help us determine the worth of solving the stochastic program. If the EVPI
and VSS are bounded within a tight range, it may be adequate to use a
deterministic approach to the problem instead of following an expensive
stochastic method.

The expected value, Z, of the objective function, z(£), can be bounded
because of its convexity. Madansky [42] and later Huang, Ziemba and Ben-
Tal [35] examined this property using the theory of moment spaces to bound

the expectation. Their work rests on the following result.

Lemma 1. The objective function, 2(£), in (1.3) is a convex and continuous

function of £, the right-hand side.
Proof. See Madansky [42]. B

This result then allows the application of Jensen’s inequality for convex

functions. Directly from this, we have

z, = E[z(£)] 2 2( E(§)) = 24, (1)

giving a lower bound on the perfect information solution, ;. (In this analysis,
we use the definitions of 2;, 23, 23, and z¢ from Chapter 1.)

An upper bound also can be found for Z;. We present here only the one
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dimensional case. The multidimensional case can be found in Madansky [42].
The bound is known as the Edmundson-Madansky inequality, and it states
that, for £ € [a,b] C R, p= E[¢],

b—up p—a
2, = E[2(¢)] < ( ) b), 2
= Ela(e)] < (=2 )eta)+ (E=2)e) @
wihere Dy QefDItiON here y = I|{|. 1NIS I8 SHOWD easily, since TOr any f

[a,d), t = (a(b — t) + (t — @)b)/(b — @) = Xa + Xb, and, for z(t) convex,
£(t) < 2z(a) + \z(b), which by integrating yields (2). We can now state (1) |
and (2) as |

Theorem 1. For ¢ € [8,b) C R!, u = E(¢), and z as defined above,

(b — )/ (b — a)z(a) + (4 — a)/(b — 6)2(d) > 21 > 2(u).

Huang, Ziemba and Ben-Tal carry these principles further. They sub-
divide the interval [a, )] and apply successively finer approximations, which
they show approach the expectation. This method makes possible the refinement
of the EVPI to whatever level is desired.

Another method for computing bounds on the EVPI was presented by
Avriel and Williams [5]. They showed that

O0S EVPI < 22— 24 < Z4— 24, &)

where 23 is the best stochastic solution and z, is the expected value deter-
ministic solution, as in Chapter 1. They also show that, for z(£) differentiable,
the bound using the expected value of £ (as in z4) is the tightest possible.
These approaches give us methods for estimates of the benefit we may
gain from knowledge about the random variables. We concern ourselves here
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with the VSS, the value of solving a stochastic program over solving a deter-
ministic one. The EVPI is used to find the value of additional information,
but, in looking at the VSS, we assume that no more information is available.
We ask: what given our present state of knowledge, is the value of solving a
large stochastic program?

Similar results to those above can be found for VSS. We can bound VSS

as in the following theorem.

Theorem 2. The value of the stochastic solution (VSS = Z, — %3, as defined
in Chapter I}, satisfies the inequalities

0<VSS < 24— 24 (4)

Proof. We showed VSS > 0 in Chapter I. It suffices to show z4 < Z3. We
had 2, £ Z; < Z3. Now, z¢ = 2( E(f)) and Z; = E(2(£)), so, for z(§)

convex, by Jensen’s inequality, 2, < Z;. The result follows. §

This bound can prove useful in estimating the benefit of the stochastic
program, but, if it remains high, further analysis may be required. As a
first step in solving the stochastic program, we may find other deterministic
solutions corresponding to different scemarios or outcomes of the random

variables. We describe this approach in the next section.

3. The Scenario Approach

In evaluating the perfect information or “wait-and-see” solution, 2, a
solution to the program, z;(£), must be found for each possible outcome of
the random vector, £. The scenario approach, also known as “modified wait-

and-see” in Gunderson, Morris, and Thompson [31], involves solving several

of these deterministic programs, evaluating the expected cost of using the
23
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strategy that is optimal for each scenario, and choosing the strategy that
minimizes this expected cost. In many cases, one of the first period bases
dominates the others, and the choice for a decision is clear. As Gunderson, et
al, emphasize, this method can be quite responsive to management concerns
and may prove very useful since it presents alternative possibilities and risks
in a compact and easily understandable form.

In the scenario approach, we first choose a set of possible outcomes for

¢, which we call, &, where

B={&,..., &} (5)

For each £° € B, we find the optimal solution, z*, for 2(¢°). Then, we

compute

¢(6°) = Ele(z*(£%), &)] (6)

for each £, where ¢(z*(£9), £) is the resulting objective value from using z*
when ¢ actually occurs.

Next, we find

*

¢* = min goeg ¢(€°). )

This value represents the least expected cost from using the solution of a
deterministic program.

This implies that a deterministic problem other than the expected value
problem may result in a better solution. This is because less penalty may
be incurred by following a piecewise linear section of the objective function
other than that that covers the expected value. (See Figure 1.)

We can also bound ¢* as in the following theorem.
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Theorem 3. For E discrete, the best scenario solution , ¢*, satisfles

S TR A AR T T T T TN
v

3 <¢' <z, (8)

Proof. We know

|

¢* = min oep El¢(z(£°)), €] < Ele((8), &) = 2,

and, for z* optimal in ¢*,

Zs = min ¢er Efe(2(¢€)), €] < Elg(z*), &] = ¢".
Hence, the result.j i

The inequalities in (8) show that the scenario approach may be useful
in finding a closer approximation to the solution of the stochastic program.
¢* may be especially valuable when ¢* — 2, is small, since it also bounds

Z3 — z4 and may show that solving the stochastic program is unnecessary.

z(D !
— 2(x(£),E)
—— e— z(x(e) 9E-')
——.cmmaa z(x(E)oE)

Figure 1. The expected value of z(z(%), ¢) is greater than that of z(z(¢), £).
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This outcome is most likely when the optimal decisions in the first period
(those that are actually implemented) correspond to the same basis for most
of the scenarios.

The scenario approach can also be used to find activities that may be
basic in the optimal solution of the stochastic program. If the set of optimal
basic activities remains fairly constant for the possible realizations of §, then
this set of activities may be optimal in the stochastic program. We discuss

this possibility in the next section.

4. Combining Scenarios

A natural approach to solving the stochastic program would be to use
the optimal solutions of the different scenarios and to combine them in an
appropriate manner. The proper combination may, however, be quite difficult
to find and may lead to as much effort as solving the stochastic program
directly. We present below the problems inherent in combining scenarios and
some situations, in which, the optimal combination may be found directly.

In this analysis, we restrict ourselves to a two period case, for which there
are only two scenarios considered. The difficulties involved in this example
are typical of all stochastic programs, so we present this case because of
its simplicity. The results may be easily generalized to more periods and
scenarios.

We begin by defining two scenario problems as

min 2(¢') = ¢121+¢a73

subject to Az =b
]| 171 1 (51)
—B121+Axza= €1
z1,z22 20,
26




F—

‘i

min 2(£2) = ¢;21+4c222

subject to A131 = bl
! (52)

—Bz,-+Azz3= {3

1,22 Z 0.

Solving S1 and S2 yields the optimal solutions, z* and z%*, and optimal
dual prices (x1'*; o1:*) and (x®*; 0%*), where z* = x* - b; + 0* - £. We also

define the following index sets:

B* = {7 : A1(+,7) is basic in S1 }

and

B2 = {5 : As(*,7) is basic in S2 }. 9)

The complements of 4! and A2 are defined as 31 and 32, respectively.

Now, our actual goal is to solve the following two—period version of SDLP

min 121 +pleazl +peazd
subject to A;z, = b,
—Bi1zy +Aazl = £} (SDLP2)
—Byzy +Azzi = &3

1,253,232 > 0.

We would like to use the activities in #! and 82 as the optimal basis
of SDLP2. In other words, for § = {5 : A;(*,J) is basic in SDLP2 }, we
are looking for § C F!'|JA3. Unfortunately, this is not always possible.
The difficulty results from the properties of the basis in SDLP2. In order to
maintain full rank of the basis in this program, the optimal basic activities
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from (S1) and (S2) cannot all be in the optimal basis of SDLP2, unless the
square block situation we discussed in Chapter I holds.
In general, when we attempt to combine scenarios, we face a duality gap

as the following lemma states.

Lemma 2. For z*, the optimal value of SDLP2,

-—(Pl lt+p2 2t)b+pl l¢€1+p2 2t€2
<z* (10)

< ci(plzl* + pPz®*) + peaiy” + pleaiy* =z,

-2.

where z * and z * are the optimal primal solutions for S1 and S2, z3'" and

:'i:; * are the values of the second period basic variabies in S1 and S2 chosen to
satisfy A%y = €5 + Bi(ptzl* + p*z*) and Axzd* = €2 + By (p'z3* +
p?z2*), [if £3* or 5:2 * <0, set 7= +o0j, and x1*, x%*, o1*, and 0%* are
the optimal dual values for S1 and S2. Furthermore, the duality gap, if i;"’

and 3" are feasible, is

Z—z = (c} — o¥* A} 4 x3*Bl)piplzl* + (3 — oV* A2 + £V B, )pl g2,

(11)
where ¢} = {¢; : j € ﬂ‘ﬂﬁz}, 2={c:J€ B' N Ba}, Al = {a; : a;
is a column of A; and j € S'(B°}, AL = {a; : a; is a column of A and
j € B' B2}, and B? and B! are columns of B, corresponding to A} and
A3, respectively.

Proof. First, we show that (plol* + p20%*;plxl*;p?x2*) is a feasible
solution to the dual of SDLP2. We have x%*Az < ¢z and x1*4; < ¢3,
since x1'* and x%* solve S1 and S2. This also yields —x1*B; +o1*A; < 4
and —x%* B, + 0%*A; < c3, 80
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—(p'x"* + p2x2*)B; + (p'o™* + p20**)A, < ¢, (12)
since p', p? > 0 and p* + p? = 1. Therefore, the solution is dual feasible,
hence, by duality, we have z* > 2.

Now, we consider (p'zl:*p222*; £1*; 2 £2*) and observe that Ay(plzlr4
p?z%*) = b, that, by definition, % 2" and % 2" satisfy the second set of in-
equalities in SDLP2, and, that, if % "2 * and zz' are not feasible, # = oo.
Therefore, if 23* > 0 and #2** > 0, the solution is feasible and z* <z
Therefore, 2z < z* < Z. For the expression of the duality gap, we

observe that

— (plal" +p202")(p1A1z1" +p2A1:!:2")
+ plxt* (A2} —p'B, zy* — p?B,2%*)
+ pPr?t (A" — p'Biz}* — p?B;23")

N

=0t + ) el + g

+p2c2 1 1t+p2 2~)+p262t(p1A1 +p2A}zf*)

+ pPx(— —P Bi z," — 23132.)"}'?1 1' H 131 +P2A131 ")
+piat*(—p' Blz}* — p?Bla}*) + plelil”

+ pP3ae"

(13)
where ¢ = {¢1(7) : 5 € A1\ 5%}. We then have
z= Z—p’d(p‘d P'si") — p'el(p' 2] + pP2}) 14)
+(p20.2,*Ai__ 2‘Bl +p10’l l-AZ ltBZ)(pl +p2 2#
which, since ¢} - z;* = 0 and ¢! - z2* =0, ylelds
£ =7 (e — %4} + 2 Bl)pplel) 05

~ (6 — ol A7+« BY)(plp?s}
Heneo, the resuit in (11) follows. 3
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Measuring the duality gap in (11) is another way of finding the value of
solving the stochastic problem directly. If the gap is small, then we can use
the simple weighted average of the optimal scenario values without incurring
a great penalty. A large gap signifies greater variance among the scenario
solutions and should lead to a stochastic approach. A large difference can
also result from infeasibility of the primal solutions since by definition in this
case, Z = 00. In some instances, the gap may be closed easily as we discuss

below.

We first consider the case of § = @! = S2 (same first period basic
activities in S1 and S2), but where || > m;, the rank of A;. This situation,
which we described in Chapter I, signifies that the same basic activities cannot
exclusively be used to solve SDLP2. They will not span the row space of the
matrix. If we have an inequality form, however, the weighted average of

optimal first period values may be optimal in SDLP2.

We write the coefficient matrix of SDLP2 as

A} Af A A
A=|—-B} —B} —B? —BYN A AN (16)
—BY —B} —B} —BY 43 43N

where A} = (Ay(*,7) : 7 € B B?), A}, A? are defined as in Lemma 2,
AN = (Ay(+,j):j € Fl ﬂﬁa), Al, A2 are the basic second period columns
in S1 and S2, respectively, the columns of A%'N and Ag'N are non-basic, and
the B;'-’s are defined correspondingly.

Now, we assume that §; — f; and that we can replace the second

equality in SDLP2 with an inequality. SDLP2 becomes
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min ¢y} +elyl +elyl +pevi +PPdvi el My oG NN

st. A% +Alyl +ANyN = b,
—Bjy} —Bjy} —BYy +A; +ANyLN > &
—B%y} —Bly} —BYy{ +A3y;  +APNPN > €3

Y1, 92 20,
(SDLP2')

where the variables (y;,y2) replace the variables (2, z2) in SDLP, so that
we can compare their values. First, we define a solution to SDLP2' by the

following. Let a solution (y;; y},y3) be

pa (44 )0 o
yy ;y1 ;Vz = —B? —B} A% f; .

This solution is the same as (z{" s z;"). Next, define

v = {i : z]**(¥)is basic in row j of S1 for j > m,}, (18)
[ where m, is the number of rows in A;. Now, partition Al as
F A = (ALG,9) 5 € )
and
A = (A305,%): 5 V). (19)

A;'v is non-singular because the basis in (17) is non-singular.
We complete the definition of y* by

B = A" HET + BY"Y” + BYy)

and
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vg.v'=€:.V+ BOwv 0¢+Blv lt' (20)

Here, yg"’ : represents the slack variables. Now, we wish to show that y* is

an optimal solution to SDLP2'. We will have to restrict the solutions of S§1
and S2 for this to be true. We first look at the dual of SDLP2'.
Let 2 = (x2:j € ¥) = O and #*7 = (x2 : j Zv) = p?cZ(A27"), 50

we have 7242 = (p2c3;0) where the objective row coefficients of the slacks

92' " are 0.

Next, let

7= plej(A”) T — xh U (AZV)AFT) Y, (21)

and

7Y = (e — oA} — BYplel(A}T)H)(BY(AYT) ALY — BY)T,

where B} = (BY(x,1) : 1 is basic for row j such that j € v) and BY, AY are
defined accordingly. Now, let B = (B}7(A)7)~1A}Y — BY)~! and compute

o as

o = [e] + (BY — BY(AY") " AL*)(B) ™M} — BY(A}") e}

+ BY(ALP)ell(AL” + (BY — BY(ALY) Al tan-t, D)

We substitute for #1:¥ in (21) and find that, #ozp and soLp, the optimal

dual prices in S1 (or S2, since the bases and objective functicns are the same),

satisfy
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(i) x%¥ =,

(ii) #2¥ = p3(x%, p, + ToLpATY (AD7)Y),

(iii) x¥ = x4,

(iv) x7 = p!(xZLp — (b2 /p")xy, p AZ(AZP) -1,
and (v) o =ooLp.

Hence, we have

—x%7B) —x%B, — £17p, _ x1¥B; + oA,

v v
—%oLpB1 — x5 By + OoLp4; < ¢,

v pv_ v v v_ ¥
—7oLpBy — %oLpB] + ooLpA] = ¢7,

_’rgLDB'f — XorpBi + ooLDA; = ¢f.
We also observe that
1,7 41,0 1,0 4L,v __ 1,V 1,7 v v
Ay + P AYY = pl(xG p Al + xoLpAs")

2 1,v 2_v 1,v
— P %orpAy” +p xS LpA;
—— nl.l
'“‘p Cz:

and that, similarly,

AT ADY | g2 AP = p2a2

We need only that

xl,VAgf,V_*_ KI'VA;V'V S plC;'N
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and

x2,VA2N,V+ ﬂ,2,5’A‘2IV',II S p2c§,N (29)

in order for feasible y* to be optimal, since we have already shown com-
plementarity in (24), (25), (26), and (27). (23) also shows dual feasibility for
the first period constraints.

To ensure that (28) and (29) hold, we need to have the following equality
satisfied:

x5LpATY (A7) LAY = x4 p AN (30)

By the definition of x! and #2, (30) implies (28), since

RI’VA;V'F-f— a.l,uA‘zN,l/ —_ pl(ngDA;V,V+ x‘(’)LDAy'y)
+ P (o042 — Korp AT (427) A7)
<p'ey,

and (29) holds by

xﬁ,FAQN,V + IZ,VA2N,V — pz(xZLDAQN'F + (x.xéLDAg,V(A:,V)—IAQN,V))
= A""’("'léz,pf‘év 7 4 ngDAzN")
< pe}.

Hence, we have shown the following theorem.

Theorem 4. For y* as defined in (17) and (20), if y* is a feasible solution
to SDLP2' and the optimal dual prices in 51 and S2 are such that (30) is
satisfied, y* is an optimal solution to SDLPZ.

The restriction of the prices in (30) guarantees optimality, but (28) and
(29) may be true even if (30) does not hold. In examining a problem of this
34




type, if (30) fails, one may want to carry out the additional computations in
(28) and (29) before solving the stochastic problem. ,

The difficulty in finding optimality conditions for combining scenarios
for even a simple problem such as SDLP2', shows the importance of the
stochastic solution. The conditions in (30) can be generalized to allow for
penalties in satisfying inequalities in the second period, but the results are
more restrictive and direct computation of the dual feasibility conditions be-
comes more efficient than checking additional inequalities. Our development

leads to the following method for combining scenarios.

(A.) Combine the first period scenario solutions, zi,...,z¥, by a simple
weighted average, y! = Y'_, pzi.

(B.) Follow the branch of worst cases (what we shall call the catastrophe ]
branch), that is, the set {£;} where £ = (£7(1), £5(2), ..., €;(m¢)) such that
£(¢§) = sup jff(i) fort =1,2,...,m:. Using these right-hand side values,

we have that, if

—B_1ys_, + Ay: = &,

then

—Bi1yi_, + Ayt > €

for all j. This procedure guarantees primal feasibility lor y;. We use the
non-singular blocks from this scenario to determine new values based on yj.
(C.) Use similar blocks for the other branches and maintain primal
feasibility (by, perhaps, paying penalties).
(D.) Compute the dual prices and check for closure of the duality gap.
35
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This approach would be most successful when the different scenarios

have nearly identical bases. In these cases, the noncomplementarity would

exist in only a few terms. The difficulty of using these optimal linear program
solutions, however, is that they all correspond to extreme point solutions and
may include very different sets of basic activities. This property could make
their combination in a stochastic program most difficult. In the next section,

we present small examples of this occurrence.
5. Examples

The extreme point properties of the basis in a linear program are cru-
cial in understanding stochastic program solutions. Critical values of the
parameters limit the use of different scenarios. In some cases, the implemen-
tation of any deterministic solution may lead to heavy penalties relative to
the solution of the stochastic program. One example of this occurrence is ‘

the following linear program :

min z = zy +4z3 + E¢{miny, +10y; |z, and zj]
subject to z; Jz3 =1
—z1 +2z3 + +ya =§ |
0y <2
z1,22,¥2 20,
¢ is Uniform [0, 4).
(EX1)
We solve EX1 for § = (1,3) and find the expected value of using the
optimal decisions for these scenarios as

7z = Elz5(¢)], (31)

where
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zg(€) = e12(§) + [ min  cayl=(?), €. (32)

‘We define

z =z(1) (33)

and

Zrr = %(3). (34)

We want to consider also the perfect information solution

Zp = E¢[ min ¢y -z 4¢3 - yl¢], (35)

and the stochastic solution, Z,, where we allow £ = 1 or 3 with equal
probability.

The function zz-(f) for 21, 211, 2,, and 2, appears in Figure 2. We observe
that the optimal basis changes as £ ranges over [0,4].

For £ < 1, z; only is in the optimal basic set of variables, for 1 < ¢ < 3,
{z1,z3} is optimal, for 2 < ¢ < 3, an alternative optimal set includes z;
alone, and, for 3 < ¢ < 4, the only optimal first period activity is z3. In
the stochastic solution, £; and z; must be in the optimal basis, reducing the
expected loss relative to the perfect information solution. We find this from
the figure as

Zr — %, = 10.25,

Zrr — 2, = 5.50, and
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7. - ZP - 3.75. (38)

The losses in (36), (37), and (38) associated with this problem demonstrate
the usefulness of the stochastic solution. By assuming any deterministic value
for the right-hand side, a large loss may result. The simple stochastic for-
mulation with two possible ¢ values, however, reduces the risk of this situation
and enables us to approach the perfect information solution. The stochastic
solution, therefore, lends resilience to the result. It provides a rationale for
hedging strategies.

To demonstrate further the semsitivity of models to uncertainty, we
return to the exhaustible resource model of Chapter I, (1.29). We stated that
this model had an optimal deterministic solution, but, by adding an uncertain
return from investment in exploration, we again arrive at a situation, in

which, every deterministic solution will be associated with losses relative to
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Figuare 2. Example costs.
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the stochastic solution.

The modified problem is

min 37, citio + Ty kiio + e BT, P [eaul s + kivl )

subject to £ +uo < Rig; fori=1,...,m,
Y1 %0 = Do;
2], +ul, <Ryj foralli,j, and